Abstract
A new hetero-structure of n-TiO2/p-WS2/p-Cu2O is proposed as a potential candidate for solar energy generation using tungsten disulfide (WS2) as an absorber layer. The proposed device performance is simulated by employing a one-dimensional solar cell capacitance simulator (SCAPS-1D). The numerical simulation studies compared the performances of n-TiO2/p-Cu2O, n-TiO2/p-WS2/p-Cu2O, and n-TiO2/p-WS2 hetero-structures based on various physical parameters like interface defects density, bulk defects density, absorber layer thickness, series resistance, shunt resistance, and operating temperature. In our simulation investigations, we found that interface defects pose a formidable impact on heterojunction devices. Interface defects closer to the front surface severely deteriorate the performances than the back surface. The bandgap of the absorber layer influences the performances of the solar cells. A closer comparison between n-TiO2/p-Cu2O and n-TiO2/p-WS2 heterojunction solar cells (HJSCs) revealed that the latter (n-TiO2/p-WS2) has nearly 182% better performance than the former (n-TiO2/p-Cu2O) devices. Additionally, the performance of the n-TiO2/p-WS2 solar cell is further boosted by ~ 139% in the presence of a hole transport layer of p-Cu2O. The best-simulated efficiency of the proposed new hetero-structure (n-TiO2/p-WS2/p-Cu2O) solar cell is 28.86%. Moreover, these optimized physical parameters may shed light on "easy to apply" new path for fabrication of a non-toxic, environment-friendly, and highly efficient novel thin-film heterojunction (n-TiO2/p-WS2/p-Cu2O) solar cell.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have