Abstract
This paper describes the development of a Software Defined Radio (SDR)-based Transceiver simulation model using Quadrature Amplitude Modulation (QAM) Scheme and analyze its performance using Forward Error Correction (FEC) channel coding algorithms namely the Convolution and the Turbo Codes. This model efficiently evaluates the performance of high data rate multi array M-QAM, schemes. The performance of these FEC codes is evaluated when the system is subjected to noise and interference in the channel. In this design Additive White Gaussian Noise (AWGN) channel has been considered. The design is analyzed using Bit Error Rate (BER) and Signal to Noise Ratio (SNR) for different M-QAM techniques. The simulation results give a possible solution for future SDR systems which may be used in various wireless communication systems. An experimental result shows that the QAM transceiver achieves the transmission of data at high level accurately. FEC Channel coding scheme is used wherever the re-transmission of the data is not feasible. On the receiver side, this channel coded signal is decoded in order to get back the original data even if the channel coded signal undergoes some interference from the noise in the transmission medium. The Performance is then analyzed in terms of BER for Convolution Coding and Turbo Coding algorithm at a particular value of SNR in LabVIEW graphical programming. Finally, comparison has been drawn based on different parameters between the existing SDR system and the proposed design in this paper to analyze and highlight the effectiveness of the proposed SDR design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Metaheuristic Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.