Abstract

The aim of this paper is to use a software defined radio (SDR) based approach in order to select channel encoding and decoding method accordingly using 8-QAM (Quadrature Amplitude Modulation) in terms of bit error rate (BER). By selecting a higher order format of QAM, we are able to carry more bits of information per symbol; also the data rate can be increased thus achieving greater distance between adjacent points in the I---Q plane by distributing the points more evenly. Hence the constellation points are more distinct and data errors are reduced. In the present work 8-QAM is chosen as modulation scheme so that balance can be maintained between higher data rates while maintaining an acceptable bit error rate for SDR. Channel coding schemes forward error correction are used where the re-transmission of the data is not feasible, thus redundant bits are added along with the message bits and transmitted through the channel. On the receiver side, this channel coded signal is decoded in order to get back the original data even if the channel coded signal undergoes some interference from the noise in the transmission medium. The performance is then analyzed in terms of BER for Hamming and convolution coding algorithms at a particular value of SNR in LabVIEW graphical programming. With the help of LabVIEW we were able to design the systems in a block-based manner in shorter time as compared to the commonly used text-based programming languages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.