Abstract

Due to its special features, one of the problems of high concentrator photovoltaic (HCPV) technology is the estimation of the electrical output of an HCPV module. Although there are several methods for doing this, only some of them can be applied using easily obtainable atmospheric parameters. In this paper, four models to estimate the maximum power of an HCPV module are studied and compared. The models that have been taken into account are the standard ASTM E2527, the linear coefficient model, the Sandia National Laboratories model, and an artificial neural network-based model. Results demonstrate that the four methods show adequate behavior in the estimation of the maximum power of several HCPV modules from different manufacturers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.