Abstract
High Concentrator Photovoltaic (HCPV) modules (with concentrations higher than 300 times) have increased their conversion efficiency records up to more than 43% in the last years. This represents the maximum conversion efficiency by any type of photovoltaic (PV) module. Moreover, HCPV modules still have a theoretical potential for a significant efficiency growth. This work analyses the current status of efficiency records of HCPV modules and their evolution in the last 20 years, as well as the most efficient commercial HCPV modules, these last with up to around 34% efficiency nowadays. It is found that the efficiency growth of HCPV modules in the last years is considerably greater than that of other PV technologies like crystalline silicon (c-Si) or Thin Film. The values of efficiency, acceptance angle, geometrical concentration and power of current HCPV modules are gathered. Current efficiency values are typically centred in the range between 27% and 33%, whereas the current average of acceptance angle values is ± 0.9°. Regarding the geometrical concentration of the efficiency record HCPV modules, it is typically lower than 400× whereas current commercial HCPV modules work in the range of 500–1000×. Moreover, a total of 24 commercial HCPV modules were characterised indoors at the CPV solar simulator at the University of Jaén in order to compare the datasheets with the experimental data. The measurement results, including the efficiency and acceptance angle characteristics, are presented and compared with datasheet values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.