Abstract

• Entropy generation of R134a flow condensation inside micro-fin and straight tubes is studied and compared. • Geometrical parameters impact on entropy generation is investigated. • Flow conditions impact on entropy generation is analyzed. • Favorable geometrical and flow conditions at which the micro-fin tube has superior performance are identified. Heat transfer enhancement techniques are accompanied by pressure drop amplification, detrimentally affecting their performance; entropy generation analysis is an effective approach to assess heat transfer enhancement along with resulting pressure drop. Current study investigates and compares the performance of micro-fin (as a passive enhancement technique) and smooth tubes during flow condensation (for R134a refrigerant) through conducting entropy generation analysis. First, the impact of geometrical and operating variables on pressure losses and heat transfer contributions to entropy generation and total generated entropy inside both types of tubes is examined. Then, the conditions at which the application of micro-fin tubes in lieu of smooth ones is justifiable and of superior performance are identified utilizing entropy generation number. The simulation results indicate that entropy generation enhances in the micro-fin tubes as tube diameter, mass velocity, vapor quality, and wall heat flux rise, and saturation temperature declines. The same is observed in the smooth tube except for the mass velocity; an increase in this parameter leads to a decreasing-increasing trend in entropy generation. Moreover, the entropy generation number results indicate that applying micro-fin tubes rather than smooth ones is justifiable, i.e., has better performance, at lower mass velocities and vapor qualities, but higher saturation temperatures and wall heat fluxes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call