Abstract
The use of machine learning (ML) algorithms for power demand and supply prediction is becoming increasingly popular in smart grid systems. Due to the fact that there exist many simple ML algorithms/models in the literature, the question arises as to whether there is any significant advantage(s) among these different ML algorithms, particularly as it pertains to power demand/supply prediction use cases. Toward answering this question, we examined six well-known ML algorithms for power prediction in smart grid systems, including the artificial neural network, Gaussian regression (GR), k-nearest neighbor, linear regression, random forest, and support vector machine (SVM). First, fairness was ensured by undertaking a thorough hyperparameter tuning exercise of the models under consideration. As a second step, power demand and supply statistics from the Eskom database were selected for day-ahead forecasting purposes. These datasets were based on system hourly demand as well as renewable generation sources. Hence, when their hyperparameters were properly tuned, the results obtained within the boundaries of the datasets utilized showed that there was little/no significant difference in the quantitative and qualitative performance of the different ML algorithms. As compared to photovoltaic (PV) power generation, we observed that these algorithms performed poorly in predicting wind power output. This could be related to the unpredictable wind-generated power obtained within the time range of the datasets employed. Furthermore, while the SVM algorithm achieved the slightly quickest empirical processing time, statistical tests revealed that there was no significant difference in the timing performance of the various algorithms, except for the GR algorithm. As a result, our preliminary findings suggest that using a variety of existing ML algorithms for power demand/supply prediction may not always yield statistically significant comparative prediction results, particularly for sources with regular patterns, such as solar PV or daily consumption rates, provided that the hyperparameters of such algorithms are properly fine tuned.
Highlights
Accurate forecasting of the power being generated and consumed in smart grid systems is crucial to ensuring grid sustainability [1]
A thorough statistical significance analysis of the different methods revealed that within the confines of the datasets used in this study, there was little/no significant difference in the performance of the different machine learning (ML) algorithms
The goal of this study was to determine whether there is a statistically significant difference in the performance of various well-known simple machine learning (ML) models when they are applied to the prediction of power demand and supply
Summary
Accurate forecasting of the power being generated and consumed in smart grid systems is crucial to ensuring grid sustainability [1]. Power demand/supply forecasting continues to be an area of contemporary research, and for this reason, machine learning (ML) algorithms have become key instruments for such forecasting obligations [2]. It remains unclear as to which ML algorithm performs best for power demand/supply forecasting in smart grid (SG) systems. There are many contradictory conclusions regarding the best performing algorithm(s) mainly due to the lack of proper statistical significance analyses of many output results. The authors in [5,6] claim that statistical techniques (i.e., regression-based approaches) perform better than simple ML methods, whereas the findings in [7,8,9]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have