Abstract

In this paper, the properties of GaN-based light-emitting diodes (LEDs) with lattice-matched InGaN/AlInN/InGaN (LM-IAI) quantum-well (QW) barriers are investigated numerically. Distributions of electrostatic field, carrier current density, carrier concentration and radiative recombination rate are simulated, and internal quantum efficiency (IQE) and emission power are calculated. The results show that the LEDs with LM-IAI barriers have higher IQE and emission power over their conventional counterparts with GaN barriers due to the mitigation of the quantum-confined Stark effect and the suppression of electron leakage. Furthermore, the performances of the nitride-based LEDs with the proposed barriers can be further improved by dismissing the electron-blocking layer, which is attributed to the improvement of hole injection efficiency and the decrease of overall Auger recombination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call