Abstract

Abstract: Castellated beams are now widely used for a variety of structural applications. Castellated beams are the ones which have perforations in their web part. However, these perforations increase stress concentration around the openings, and also get subjected to web post-buckling. To reduce these post-buckling failures and increase the load-carrying capacity, the castellated steel I-beams are provided with different types of stiffeners at various locations. In this paper, the behaviour of a hexagonal castellated steel I-beam (ISMB) under point loading is investigated using carbon fibre polymer (CFRP) strips as stiffeners. Two different types of CFRP strip stiffeners are provided in the transverse direction and around the openings of the castellated beam. The finite element analysis of these stiffeners has been carried out by using ABAQUS software. The results show that the use of CFRP stiffeners for castellated beams enhances load-carrying capacity up to 20% and reduces the deflection by 12% as compared to the control castellated beam. The use of transverse CFRP stiffener reduces the web buckling failure and increases the load carrying capacity effectively as compared to the stiffeners used along the openings. As a result, it is preferable to use transverse stiffeners instead of the stiffeners used along of the openings. Keywords: Abacus software, Castellated beam, CFRP, Openings, Transverse stiffeners

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call