Abstract

Fast Fourier Transforms (FFTs) are frequently employed in various applications such as image processing and speech recognition. Though FFT calculations can be speeded up considerably, real time processing requirements are well above that of modern day uniprocessor systems. Computing power can be substantially increased through the exploitation of the inherent parallelism available in FFT calculations. However, experimental performance analysis of the Parallel FFT (PFFT) algorithm has not been sufficiently investigated in a loosely coupled multiprocessor environment. In this paper, we evaluate the implementation of a PFFT on a network of T800 series transputers connected in the form of a linear pipeline and a binary cube. We analyse the speedup obtained, taking into account both computation load and communication overhead. A new load balancing algorithm has been incorporated so that load balancing takes into account both computation and communication loads. Realistic performance figures obtained through ac...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.