Abstract

Image processing can be considered as signal processing in two dimensions (2D). Filtering is one of the basic image processing operation. Filtering in frequency domain is computationally faster when compared to the corresponding spatial domain operation as the complex convolution process is modified as multiplication in frequency domain. The popular 2D transforms used in image processing are Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). The common values for resolution of an image are 640x480, 800x600, 1024x768 and 1280x1024. As it can be seen, the image formats are generally not a power of 2. So power of 2 FFT lengths are not required and these cannot be built using shorter Discrete Fourier Transform (DFT) blocks. Split radix based FFT algorithms like Good-Thomas FFT algorithm simplifies the implementation logic required for such applications and hence can be implemented in low area and power consumption and also meet the timing constraints thereby operating at high frequency. The Good-Thomas FFT algorithm which is a Prime Factor FFT algorithm (PFA) provides the means of computing DFT with least number of multiplication and addition operations. We will be providing an Altera FPGA based NIOS II custom instruction implementation of Good-Thomas FFT algorithm to improve the system performance and also provide the comparison when the same algorithm is completely implemented in software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.