Abstract

This paper reports a performance analysis for a new sustainable engineering application to beneficially reuse an abundant agricultural waste, coconut coir (Cocos nucifera), in evaporative cooling pads. Two small coconut coir pads of different configurations were fabricated and tested using a laboratory‐scale experimental arrangement. The air supply velocity was controlled and varied between 1.88 and 2.79 m s−1. Heat and mass transfer coefficients, evaporative cooling efficiency and pressure drop across the two types of coconut coir pad were analysed and compared with those of a commercial rigid media paper pad. Results show that the cooling efficiency of the manufactured coconut coir evaporative cooling pad was fairly good (about 50%) and close to that of the commercial paper pad (about 47%). The average pressure drop across the two coconut coir pads was 1.5 and 5.1 Pa respectively. Correlations for heat and mass transfer coefficients expressed using Nusselt and Sherwood numbers are also reported. In addition, the cooling potential of the coconut coir pads was analysed using the average climatic conditions of the central region in Thailand throughout the year. The analysis showed that the air temperature leaving the coconut coir pad varied from 23 to 28°C. Commercial development appears feasible given the coconut coir pad's good performance, lower cost and its availability throughout the country.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.