Abstract

Photovoltaic modules installed on water bodies save large land areas but climatic conditions for such solar power plants, are different due to their proximity to flowing water.Thus it is important to study the performance of a canal-top solar PV plant for its reliable operation. In the present study, energetic, exergetic performance and reliability analysis of a 10 MWp grid-connected canal-top PV plant, is studied using more than 2 years data. The average monthly performance ratio, system efficiency and exergy efficiency of the plant, are found to be 0.78, 11.90% and 12.03%, respectively. PV degradation rate is found to be higher than land based power plants. The average monthly exergy efficiency, useful thermal exergy convective heat transfer loss and exergy destruction during monitoring period, are found to be 12.03%, 18.32%, 1% and 58.65%, respectively. The performance of present plant is found to be slightly lower than land based PV plants. The possible solutions to improve output power generation by canal-top PV plants are discussed. The water saved due to reduced water evaporation is found to be about 95 million litres per year.Further follow up research areas are identified to enhance the reliability of such power plants installed over water bodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call