Abstract
Reliance on renewable energy sources (RESs) such as solar and wind has increased to build a sustainable environment, however, their substantial implementation is hindered by their intermittency. Electric Spring (ES) is one of the technologies to mitigate the intermittent nature of the RESs. In an isolated RES powered microgrid, the ES in conjunction with the non-critical loads in a system like water heaters, refrigerators, and air-conditioners can regulate voltage of critical loads like security system, servers etc. This paper establishes the operating principles of the ES (with reactive power compensation only) and its interaction with RESs based on the understanding of AC power transfer between two sources. The accurate phasors in a system under two scenarios, with and without ES, are drawn. Also, performance of the ES is analyzed and evaluated with respect to variations in the loads (linear) and their types. It is augmented with analytical justifications and validated through simulations and experimental studies. Also, through analytical expressions, simulations, and experiments the importance of the non-critical load on the performance of the ES is illustrated. It is also highlighted that the compensation capabilities of the ES remain the same irrespective of the types of non-critical load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.