Abstract

Perfluorocarbon (PFC), a kind of oxygen carrier, is encapsulated in PLGA-PEG to prepare a PLGA-PEG/PFC emulsion for highly efficient reoxygenation to cell and organism. HCT 116 cells are used as a model cell, whose viability has a significant enhancement after reoxygenation with PLGA-PEG/PFC emulsion because of the sufficient and timely oxygen supply. Meanwhile, hypoxia-reoxygenation injury will happen along with cell hypoxia-reoxygenation treatment, which is reflected by increasing reactive oxygen species (ROS) in cells. However, the integration of intracellular ROS and cell viability implies that the degree of hypoxia-reoxygenation injury is sublethal to HCT116 cells when the concentration of PLGA-PEG/PFC emulsion is lower than 0.2 mg/mL. Furthermore, the change of the expression level of hypoxia-inducible factor-1α (HIF-1α) is similar to that of cell viability during reoxygenation, which suggests that HIF-1α or its downstream proteins may make a significant contribution to cell viability. In vivo oxygen supply is assessed in rats through pulmonary delivery, which shows that PLGA-PEG/PFC emulsion can supply oxygen to rats and improve rats' lung ventilation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call