Abstract

The concentrations of 14 perfluoroalkyl substances (PFASs) and 46 pharmaceuticals in raw water and drinking water from five drinking water treatment plants were determined to assess removal of the chemicals during treatment. 10 out of 14 PFASs were detected in the raw and drinking water samples. The mean perfluorohexane sulfonate concentrations in raw and drinking water were the highest with levels of 106 and 69.6 ng L−1, respectively and the other PFAS concentrations were lower. The ∑14PFAS and individual PFAS removal efficiencies for the treatment plants were −36.9% to 70.7% (mean 31.3%) but the granular activated carbon process removed >80% of the total amount of long-chain PFASs that was removed. The removal efficiency increased as the perfluorocarbon chain length increased. The removal efficiencies increased by 14.2% and 11.2% from the shortest to the longest perfluoroalkyl carboxylic acid and perfluoroalkyl sulfonic acid chain lengths, respectively. 20 out of 46 pharmaceuticals were detected in the raw water samples, but most were removed completely during treatment. Only caffeine, carbamazepine, crotamiton, fenbendazole, metformin, and sulfamethoxazole were detected in the drinking water samples. Oxidation processes contributed >90% of the overall treatment plant removal efficiency except for metformin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call