Abstract

The lattice-constant and density method revealed that a high-purity silicon crystal free of dislocations has a perfect lattice without an excess of vacant sites or interstitials (n′=8.00004) within the limits of error, in agreement with the results obtained with the decoration method. The lattice constant of vacuum heated silicon powder of semiconductor purity was 5.43070±0.00004 A; that of the nonheat-treated powder was 5.43081 A at 25°C. The constants determined from crystal chips by the rotating crystal method were lower: between 5.43028–5.43048 A at 25°C. As the constants of each series of measurements could be reproduced very well (s=±0.00004 A), the lower values suggested the presence of some unknown systematic errors, the magnitude of which is outside the scope of errors due to absorption. The thermal expansion coefficients of all samples between 10°–60°C were (2.6±0.4)×10−6/°C. The average density of etched crystal chips was 2.3289±0.0001 g/cm3. The lower density of the nonetched chips indicated the presence of microcracks, removable by etching, within the distorted surface layers. There was no significant difference in density of bars sawed, or of chips broken from the crystal and etched.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call