Abstract

Ultra-high temperature ceramics (UHTCs), most notably transition metal carbides and borides, exhibit melting temperatures exceeding 3000 °C, making them appropriate candidates to withstand the extreme temperatures (∼2000 °C) expected to occur at the leading edges of hypersonic vehicles. However, their propensity to react rapidly with oxygen limits their sustained application. The high entropy paradigm enables the exploration of novel UHTC compositions that may improve on the oxidation resistance of conventional refractory mono-carbides and -diborides. The oxidation kinetics of candidate high entropy group IV + V (HfZrTiTaNb)C and (HfZrTiTaNb)B2 materials were evaluated at 1500–1800 °C using Joule heating in one atmosphere 0.1%–1% oxygen/argon gas mixtures for times up to 15 min. Possible mechanisms based on the resulting complex time, temperature, and oxygen partial pressure dependencies are discussed. The carbides formed porous and intergranular oxides. Oxidation resistance was improved upon a continuous external scale formation. The diborides formed dense external scales and exhibited better oxidation resistance compared to the carbides. This improvement was attributed to the formation of liquid boria. Both compositions showed an unexpected reduction in material consumption at 1800 °C for all times tested, compared to results at lower temperatures. An in-depth analysis of the composition and morphology of the oxide scale and sub-surface regions for specimens tested at 1800 °C revealed that the formation of denser group IV-rich (Hf, Zr, Ti) oxides mitigated the formation of the otherwise detrimental liquid-forming group V (Ta, Nb) oxides, leading to the improved oxidation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.