Abstract

Recent years have seen a significant increase in the use of machine intelligence for predicting the electronic structure, molecular force fields, and physicochemical properties of various condensed systems. However, substantial challenges remain in developing a comprehensive framework capable of handling a wide range of atomic compositions and thermodynamic conditions. This perspective discusses potential future developments in liquid-state theories leveraging recent advancements in functional machine learning. By harnessing the strengths of theoretical analysis and machine learning techniques including surrogate models, dimension reduction, and uncertainty quantification, we envision that liquid-state theories will gain significant improvements in accuracy, scalability, and computational efficiency, enabling their broader applications across diverse materials and chemical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call