Abstract

The aim of this research is to estimate the parameters of a large‐scale numerical model of a geothermal reservoir using Markov chain Monte Carlo (MCMC) sampling, within the framework of Bayesian inference. All feasible parameters that are consistent with the measured data are summarized by the posterior distribution, and hence parameter estimation and uncertainty quantification are both given by calculating expected values of statistics of interest over the posterior distribution. It appears to be computationally infeasible to use the standard Metropolis‐Hastings algorithm (MH) to sample the high dimensional computationally expensive posterior distribution. To improve the sampling efficiency, a new adaptive delayed‐acceptance MH algorithm (ADAMH) is implemented to adaptively build a stochastic model of the error introduced by the use of a reduced‐order model. This use of adaptivity differs from existing adaptive MCMC algorithms that tune proposal distributions of the Metropolis‐Hastings algorithm (MH), though ADAMH also implements that technique. For the 3‐D geothermal reservoir model we present here, ADAMH shows a great improvement in the computational efficiency of the MCMC sampling, and promising results for parameter estimation and uncertainty quantification are obtained. This algorithm could offer significant improvement in computational efficiency when implementing sample‐based inference in other large‐scale inverse problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.