Abstract

ABSTRACT In this paper, we consider the problem on the existence of perfect state transfer (PST for short) on semi-Cayley graphs over abelian groups (which are not necessarily regular), i.e. on the graphs having semiregular and abelian subgroups of automorphisms with two orbits of equal size. We stablish a characterization of semi-Cayley graphs over abelian groups having PST. As a result, we give a characterization of Cayley graphs over groups with an abelian subgroup of index 2 having PST, which improves the earlier results on Cayley graphs over abelian groups, dihedral groups and dicyclic group and determines Cayley graphs over generalized dihedral groups and generalized dicyclic groups having PST.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.