Abstract

The design and control of spintronic devices is a research hotspot in the field of electronics, and pure carbon-based materials provide new opportunities for the construction of electronic devices with excellent performance. Using density functional theory in combination with nonequilibrium Green’s functions method, we design spin filter devices based on Penta-hexa-graphene (PHG) nanoribbons—a carbon nanomaterial in which the intrinsic magnetic moments combines with edge effects leading to a half-metallic property. Spin-resolved electronic transport studies show that such carbon-based devices can achieve nearly 100% spin filtering effect at low bias voltages. Such SEF can resist the influence of hydrogen passivation at different positions, but hardly survive under a hydrogen-rich environment. Our analysis show that the perfect SEF transport properties are caused by the magnetic and electronic properties of PHG nanoribbons, especially the magnetic moments on the quasi-sp 3 carbons. These interesting results indicate that PHG nanomaterials have very prominent application prospects in future spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call