Abstract

By using nonequilibrium Green's functions in combination with the density functional theory, the spin transport properties of a single-molecule spintronic device are investigated. The computational results show that when the magnetic configuration of the device is set as parallel, the perfect spin-filtering effect can be observed. Especially, this perfect spin-filtering effect is independent of the number of carbon atoms in the carbon chain. However, when the magnetic configuration is set in antiparallel, the spin-filtering effect displays a strong odd-even oscillatory characteristic, namely, the spin-filtering efficiencies of odd-numbered chain systems have a higher values than even-numbered chain systems. Moreover, the magnetoresistance effect can also be observed in this single-molecule spintronic device. In contrast to the odd-even oscillatory characteristic of the spin-filtering effect in the antiparallel magnetic configuration, high magnetoresistance ratios belong to even-numbered chain systems while low magnetoresistance ratios belong to odd-numbered chain systems. The mechanisms are suggested for these interesting phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.