Abstract

Based on the theory of information optics and the needs of perfect shuffle (PS) transform, a new method of achieving a PS transform is reported by using a subwavelength binary blazed grating (SBBG) array. Comparison the multilevel gratings, SBBG array can be fabricated only one step by photolithography and reactive ion etching (RIE). The SBBG array was designed to six channels PS transform, and transformation of two-neighboring channels was simulated by finite difference time domain (FDTD). The first order diffraction efficiency of SBBG designed here is larger than 80%, and has wide spectra and large incident angular tolerance by rigorous coupled-wave analysis (RCWA). The cross talk of neighboring channels was smaller than 3.24%. The theoretical analysis and computation show that PS transform using SBBG array has advantages of small size, compact structure, low loss and crosstalk, and easy to integrate with other photoelectric device. Consequently, it can be used in optical communication and optical information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call