Abstract

We describe the use of perfect sampling algorithms for Bayesian variable selection in a linear regression model. Starting with a basic case solved by Huang and Djurić (EURASIP J. Appl. Si. Pr. 1 (2002) 38), where the model coefficients and noise variance are assumed to be known, we generalize the model step by step to allow for other sources of randomness. We specify perfect simulation algorithms that solve these cases by incorporating various techniques including Gibbs sampling, the perfect independent Metropolis–Hastings (IMH) algorithm, and recently developed “slice coupling” algorithms. Applications to simulated data sets suggest that our algorithms perform well in identifying relevant predictor variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.