Abstract
We propose a method to construct perfect pulse-compression codes with autoregressive moving average algorithms. We first show the relation between the study of coding and decoding techniques in radar engineering and the study of unimodular polynomials with constrained coefficients. Then we extend the study to unimodular Fourier series and unimodular rational functions. We use the Fourier series and rational functions as transfer functions in the autoregressive moving average algorithms. We show that by a suitable choice of the coefficients, the autoregressive moving average algorithms are realisable, stable and causal. We show examples of some almost perfect codes, i.e. numerically truncated perfect codes. We end by proposing perfect code design principles for practical radar engineering purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.