Abstract
This paper gives necessary and sufficient conditions for a polyomino graph to have a perfect matching and to be elementary, respectively. As an application, we can decompose a non-elementary polyomino with perfect matchings into a number of elementary subpolyominoes so that the number of perfect matchings of the original non-elementary polyomino is equal to the product of those of the elementary subpolyominoes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.