Abstract

The notion of matching minors is a specialisation of minors fit for the study of graphs with perfect matchings. Matching minors have been used to give a structural description of bipartite graphs on which the number of perfect matchings can be computed efficiently, based on a result of Little, by McCuaig et al. in 1999.In this paper we generalise basic ideas from the graph minor series by Robertson and Seymour to the setting of bipartite graphs with perfect matchings. We introduce a version of Erdős-Pósa property for matching minors and find a direct link between this property and planarity. From this, it follows that a class of bipartite graphs with perfect matchings has bounded perfect matching width if and only if it excludes a planar matching minor. We also present algorithms for bipartite graphs of bounded perfect matching width for a matching version of the disjoint paths problem, matching minor containment, and for counting the number of perfect matchings. From our structural results, we obtain that recognising whether a bipartite graph G contains a fixed planar graph H as a matching minor, and that counting the number of perfect matchings of a bipartite graph that excludes a fixed planar graph as a matching minor are both polynomial time solvable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.