Abstract

Our topic is an extension of the following classical result of Hall to hypergraphs: A bipartite graph G contains a perfect matching if and only if for each independent set X of vertices, at least |X| vertices of G are adjacent to some vertex of X. Berge generalized the concept of bipartite graphs to hypergraphs by defining a hypergraph G to be balanced if each odd cycle in G has an edge containing at least three vertices of the cycle. Based on this concept, Conforti, Cornuejols, Kapoor, and Vuskovic extended Hall's result by proving that a balanced hypergraph G contains a perfect matching if and only if for any disjoint sets A and B of vertices with |A| > |B|, there is an edge in G containing more vertices in A than in B (for graphs, the latter condition is equivalent to the latter one in Hall's result). Their proof is non-combinatorial and highly based on the theory of linear programming. In the present paper, we give an elementary combinatorial proof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call