Abstract

AbstractA graph G is perfect if for all induced subgraphs H of G, . A graph G is Berge if neither G nor its complement contains an induced odd cycle of length at least five. The Strong Perfect Graph Theorem [9] states that a graph is perfect if and only if it is Berge. The Strong Perfect Graph Theorem was obtained as a consequence of a decomposition theorem for Berge graphs [M. Chudnovsky, Berge trigraphs and their applications, PhD thesis, Princeton University, 2003; M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann Math 164 (2006), 51–229.], and one of the decompositions in this decomposition theorem was the “balanced skew‐partition.” A clique‐coloring of a graph G is an assignment of colors to the vertices of G in such a way that no inclusion‐wise maximal clique of G of size at least two is monochromatic, and the clique‐chromatic number of G, denoted by , is the smallest number of colors needed to clique‐color G. There exist graphs of arbitrarily large clique‐chromatic number, but it is not known whether the clique‐chromatic number of perfect graphs is bounded. In this article, we prove that every perfect graph that does not admit a balanced skew‐partition is 2‐clique colorable. The main tool used in the proof is a decomposition theorem for “tame Berge trigraphs” due to Chudnovsky et al. (http://arxiv.org/abs/1308.6444).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.