Abstract

Circular-perfect graphs form a natural superclass of perfect graphs: on the one hand due to their definition by means of a more general coloring concept, on the other hand as an important class of χ -bound graphs with the smallest non-trivial χ -binding function χ ( G ) ⩽ ω ( G ) + 1 . The Strong Perfect Graph Conjecture, recently settled by Chudnovsky et al. [The strong perfect graph theorem, Ann. of Math. 164 (2006) 51–229], provides a characterization of perfect graphs by means of forbidden subgraphs. It is, therefore, natural to ask for an analogous conjecture for circular-perfect graphs, that is for a characterization of all minimal circular-imperfect graphs. At present, not many minimal circular-imperfect graphs are known. This paper studies the circular-(im)perfection of some families of graphs: normalized circular cliques, partitionable graphs, planar graphs, and complete joins. We thereby exhibit classes of minimal circular-imperfect graphs, namely, certain partitionable webs, a subclass of planar graphs, and odd wheels and odd antiwheels. As those classes appear to be very different from a structural point of view, we infer that formulating an appropriate conjecture for circular-perfect graphs, as analogue to the Strong Perfect Graph Theorem, seems to be difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.