Abstract

If the set K of r+1 distinct integers k0, k1 …, kr has the property that the (r+1)r differences ki–kj (0≦i, j≦r, i≠j) are distinct modulo r2+r+1, K is called a perfect difference set modr2+r+1. The existence of perfect difference sets seems intuitively improbable, at any rate for large r, but in 1938 J. Singer [1] proved that, whenever r is a prime power, say r = pn, a perfect difference set mod p2n+pn+1 exists. Since the appearance of Singer's paper several authors have succeeded in showing that for many kinds of number r perfect difference sets mod r2+r+1 do not exist; but it remains an open question whether perfect difference sets exist only when r is a prime power (for a comprehensive survey see [2]).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.