Abstract
We exploit the Mie resonance in dielectric microparticles to design a single-negative metamaterial monolayer with near-unity reflectivity and negligible absorptivity. In contrast to Bragg reflectors and photonic band gap materials, which require multiple layers for high reflection, this metamaterial is both highly reflective and subwavelength in thickness. We identify the underlying physics necessary to design near-perfect all-dielectric reflectors at virtually any wavelength band of interest. Using full-wave, finite-element analysis and realistic optical constants for the constitutive materials, we develop a 0.45-$\ensuremath{\mu}$m-thick, silicon-based metamaterial monolayer with normal-incidence reflectivity over 99.999% and absorptivity less than 0.001% at a short-wave infrared wavelength of 1.5 $\ensuremath{\mu}$m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.