Abstract
AbstractPerennial grain crops would address many agricultural problems, including soil erosion, nutrient loss and pesticide contamination. Doubts about the possibility of perennial grain crops rest upon two assumptions: (1) that the relationship between yield and longevity is a fixed function that cannot be influenced by selection, mutation or environmental changes; and (2) that yield and longevity trade off in a bivariate manner to the exclusion of all other traits. These assumptions are consistent with the phenotypic trade-off model, but recent research suggests that a quantitative genetic model is a more appropriate approach to trade-offs. In the quantitative genetic model, environmental and genetic changes can result in increases in two traits simultaneously even when a trade-off, or negative correlation, exists between the two traits. Empirical evidence that the trade-off between perenniality and reproductive allocation is not fixed comes from wild, herbaceous perennials that can produce more than 2000 kg seed ha−1 in the temperate zone, and herbaceous perennial crops that produce on average 8900 kg fruit ha−1 in the tropics. Ecological literature suggests that most perennials produce small amounts of seed relative to their vegetative growth not as a physiological absolute, but rather as a result of natural selection in a stable, competitive environment favoring longevity. By selecting strongly for seed yield in a population of perennial plants, the plant breeder can likely achieve that which is rare in nature—a high seed-yielding perennial plant. The same general methodologies that have allowed annual grain breeders to increase grain yield and push many combinations of negatively correlated traits to levels of expression not seen in nature are available to the perennial grain breeder. Perennial grain breeders are integrating ecological principles and traditional plant breeding methods in their efforts to develop perennial grain wheat (Triticum spp.), sorghum (Sorghum spp.), sunflower (Helianthus spp.), Illinois bundleflower (Desmanthus illinoensis) and rice (Oryza spp.).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have