Abstract
In the present work, we examine the potential robustness of extreme wave events associated with large amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the discrete nonlinear Schrödinger (DNLS) equation, namely the Ablowitz–Ladik (AL) model. Our model of choice will be the so-called Salerno model, which interpolates between the AL and the DNLS models. We find that rogue wave events are drastically distorted even for very slight perturbations of the homotopic parameter connecting the two models off of the integrable limit. Our results suggest that the Peregrine soliton structure is a rather sensitive feature of the integrable limit, which may not persist under “generic” perturbations of the limiting integrable case.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.