Abstract
Achieving efficient cardiac gene transfer in a large animal model has proven to be technically challenging. Previous strategies have used cardiopulmonary bypass or dual catheterization with the aid of vasodilators to deliver vectors, such as adenovirus, adeno-associated virus (AAV), or plasmid DNA. Although single-stranded AAV (ssAAV) vectors have shown the greatest promise, they suffer from delayed expression, which might be circumvented using self-complementary vectors. We sought to optimize cardiac gene transfer using a percutaneous transendocardial injection catheter to deliver adeno-associated viral vectors to the canine myocardium. Four vectors were evaluated--ssAAV9, self-complementary AAV9 (scAAV9), scAAV8, scAAV6--so that comparison could be made between single-stranded and self-complementary vectors as well as among serotypes 9, 8, and 6. We demonstrate that scAAV is superior to ssAAV and that AAV 6 is superior to the other serotypes evaluated. Biodistribution studies revealed that vector genome copies were 15-4,000 times more abundant in the heart than in any other organ for scAAV6. Percutaneous transendocardial injection of scAAV6 is a safe, effective method to achieve efficient cardiac gene transfer.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.