Abstract

In percolation of patchy disks on lattices, each site is occupied by a disk, and neighboring disks are regarded as connected when their patches contact. Clusters of connected disks become larger as the patchy coverage of each disk χ increases. At the percolation threshold χ_{c}, an incipient cluster begins to span the whole lattice. For systems of disks with n symmetric patches on Archimedean lattices, a recent work [Wang et al., Phys. Rev. E 105, 034118 (2022)2470-004510.1103/PhysRevE.105.034118] found symmetric properties of χ_{c}(n), which are due to the coupling of the patches' symmetry and the lattice geometry. How does χ_{c} behave with increasing n if the patches are randomly distributed on the disks? We consider two typical random distributions of the patches, i.e., the equilibrium distribution and a distribution from random sequential adsorption. Combining Monte Carlo simulations and the critical polynomial method, we numerically determine χ_{c} for 106 models of different n on the square, honeycomb, triangular, and kagome lattices. The rules governing χ_{c}(n) are investigated in detail. They are quite different from those for disks with symmetric patches and could be useful for understanding similar systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call