Abstract
We show that the interplay of geometric criticality and quantum fluctuations leads to a novel universality class for the percolation quantum phase transition in diluted magnets. All critical exponents involving dynamical correlations are different from the classical percolation values, but in two dimensions they can nonetheless be determined exactly. We develop a complete scaling theory of this transition, and we relate it to recent experiments in La2Cu(1-p)(Zn,Mg)(p)O4. Our results are also relevant for disordered interacting boson systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.