Abstract

We propose an image-space contrast enhancement method for color-encoded visualization. The contrast of an image is enhanced through a perceptually guided approach that interfaces with the user with a single and intuitive parameter of the virtual viewing distance. To this end, we analyze a multiscale contrast model of the input image and test the visibility of bandpass images of all scales at a virtual viewing distance. By adapting weights of bandpass images with a threshold model of spatial vision, this image-based method enhances contrast to compensate for contrast loss caused by viewing the image at a certain distance. Relevant features in the color image can be further emphasized by the user using overcompensation. The weights can be assigned with a simple band-based approach, or with an efficient pixel-based approach that reduces ringing artifacts. The method is efficient and can be integrated into any visualization tool as it is a generic image-based post-processing technique. Using highly diverse datasets, we show the usefulness of perception compensation across a wide range of typical visualizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.