Abstract

SVM is limited in its use for cross-project software defect prediction because of its very slow training process. So, this research article proposes a new instance selection (IS) algorithm called boundary detection among classes (BDAC) to reduce the training dataset size for faster training of SVM without degrading the prediction performance. The proposed algorithm is evaluated against six existing IS algorithms based on accuracy, running time, data reduction rate, etc. using 23 general datasets, 18 software defect prediction datasets, and two shape-based datasets, and results prove that BDAC is better than the selected algorithm based on collective comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.