Abstract

Image quality assessment (IQA) and image enhancement (IE) of night-time images are highly correlated tasks. On the one hand, IQA task could obtain more complementary information from the enhanced image. On the other hand, IE task would benefit from the prior knowledge of quality-aware attributes. Thus, we propose a Perceptually-calibrated Synergy Network (PCSNet) to simultaneously predict and enhance image quality of night-time images. More specifically, a shared shallow network is applied to extract the shared features for both tasks by leveraging complementary in-formation. The shared features are then fed to task-specific sub-networks to predict quality scores and generate enhanced images in parallel. In order to better exploit the interaction of complementary information, intermediate Cross-Sharing Modules are used to form efficient feature representations for the image quality assessment (IQA) and image enhancement (IE) subnetworks. Experimental results of the night-time image datasets show that the proposed approach achieves state-of-the-art performance on both quality prediction and image enhancement tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.