Abstract
Human-computer cooperation guided by natural interaction, intelligent interaction, and human–computer integration is gradually becoming a new trend in human–computer interfaces. An icon is an indispensable pictographic symbol in an interface that can convey pivotal semantics between humans and computers. Research on similar icons’ cognition in humans and the discrimination of computers can reduce misunderstandings and facilitate transparent cooperation. Therefore, this research focuses on images of icons, extracted contours, and four features, including the curvature, proportion, orientation, and line of the contour, step by step. By manipulating the feature value change to obtain 360 similar icons, a cognitive experiment was conducted with 25 participants to explore the boundary values of the feature dimensions that cause different levels of similarity. Its boundary values were applied to deep learning to train a discrimination algorithm model that included 1500 similar icons. This dataset was used to train a Siamese neural network using a 16-layer network branch of a visual geometry group. The training process used stochastic gradient descent. This method of combining human cognition and deep learning technology is meaningful for establishing a consensus on icon semantics, including content and emotions, by outputting similarity levels and values. Taking icon similarity discrimination as an example, this study explored the analysis and simulation methods of computer vision for human visual cognition. The accuracy evaluated is 90.82%. The precision was evaluated as 90% for high, 80.65% for medium, and 97.30% for low. Recall was evaluated as 100% for high, 89.29% for medium, and 83.72% for low. It has been verified that it can compensate for fuzzy cognition in humans and enable computers to cooperate efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.