Abstract

Deep neural networks provide unprecedented performance in all image classification problems, including biometric recognition systems, key elements in all smart city environments. Recent studies, however, have shown their vulnerability to adversarial attacks, spawning intense research in this field. To improve system security, new countermeasures and stronger attacks are proposed by the day. On the attacker’s side, there is growing interest for the realistic black-box scenario, in which the user has no access to the network parameters. The problem is to design efficient attacks which mislead the neural network without compromising image quality. In this work, we propose to perform the black-box attack along a high-saliency and low-distortion path, so as to improve both attack efficiency and image perceptual quality. Experiments on real-world systems prove the effectiveness of the proposed approach both on benchmark tasks and actual biometric applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.