Abstract

When a visual stimulus is flashed at a given location the moment a second moving stimulus arrives at the same location, observers report the flashed stimulus as spatially lagging behind the moving stimulus (the flash-lag effect). The authors investigated whether the global configuration (perceptual organization) of the moving stimulus influences the magnitude of the flash-lag effect. The results indicate that a flash presented near the leading portion of a moving stimulus lags significantly more than a flash presented near the trailing portion. This result also holds for objects consisting of several elements that group to form a unitary percept of an object in motion. The present study demonstrates a novel interaction between the global configuration of moving objects and the representation of their spatial position and may provide a new and useful tool for the study of perceptual organization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call