Abstract

When a visual stimulus is flashed at a given location the moment a second moving stimulus arrives at the same location, observers report the flashed stimulus as spatially lagging behind the moving stimulus (the flash-lag effect). The authors investigated whether the global configuration (perceptual organization) of the moving stimulus influences the magnitude of the flash-lag effect. The results indicate that a flash presented near the leading portion of a moving stimulus lags significantly more than a flash presented near the trailing portion. This result also holds for objects consisting of several elements that group to form a unitary percept of an object in motion. The present study demonstrates a novel interaction between the global configuration of moving objects and the representation of their spatial position and may provide a new and useful tool for the study of perceptual organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.