Abstract

A number of successful tone mapping operators for contrast compression have been proposed due to the need to visualize high dynamic range (HDR) images on low dynamic range devices. They were inspired by fields as diverse as image processing, photographic practice, and modeling of the human visual systems (HVS). The variety of approaches calls for a systematic perceptual evaluation of their performance. We conduct a psychophysical experiment based on a direct comparison between the appearance of real-world scenes and HDR images of these scenes displayed on a low dynamic range monitor. In our experiment, HDR images are tone mapped by seven existing tone mapping operators. The primary interest of this psychophysical experiment is to assess the differences in how tone mapped images are perceived by human observers and to find out which attributes of image appearance account for these differences when tone mapped images are compared directly with their corresponding real-world scenes rather than with each other. The human subjects rate image naturalness, overall contrast, overall brightness, and detail reproduction in dark and bright image regions with respect to the corresponding real-world scene. The results indicate substantial differences in perception of images produced by individual tone mapping operators. We observe a clear distinction between global and local operators in favor of the latter, and we classify the tone mapping operators according to naturalness and appearance attributes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.