Abstract

Purpose of ReviewThe field of humanoid robotics, perception plays a fundamental role in enabling robots to interact seamlessly with humans and their surroundings, leading to improved safety, efficiency, and user experience. This scientific study investigates various perception modalities and techniques employed in humanoid robots, including visual, auditory, and tactile sensing by exploring recent state-of-the-art approaches for perceiving and understanding the internal state, the environment, objects, and human activities.Recent FindingsInternal state estimation makes extensive use of Bayesian filtering methods and optimization techniques based on maximum a-posteriori formulation by utilizing proprioceptive sensing. In the area of external environment understanding, with an emphasis on robustness and adaptability to dynamic, unforeseen environmental changes, the new slew of research discussed in this study have focused largely on multi-sensor fusion and machine learning in contrast to the use of hand-crafted, rule-based systems. Human robot interaction methods have established the importance of contextual information representation and memory for understanding human intentions.SummaryThis review summarizes the recent developments and trends in the field of perception in humanoid robots. Three main areas of application are identified, namely, internal state estimation, external environment estimation, and human robot interaction. The applications of diverse sensor modalities in each of these areas are considered and recent significant works are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.