Abstract
The aim of the present study was to estimate the inhibitory effect of perazine, a phenothiazine neuroleptic with piperazine structure in a side chain, on human CYP1A2 activity measured as a rate of caffeine 3-N- and 1-N-demethylation. Moreover, the influence of perazine on other caffeine metabolic pathways such as 7-N-demethylation (CYP1A2, CYP2C8/9, CYP3A4) and 8-hydroxylation (CYP3A4, CYP1A2, CYP2C8/9) was also determined. The Dixon analysis showed that in both human liver microsomes and Supersomes CYP1A2 perazine potently and to a similar degree inhibited caffeine 3-N-demethylation (Ki=3.5μM) and 1-N-demethylation (Ki=5μM). Perazine moderately diminished the rate of caffeine 7-N-demethylation in Supersomes CYP1A2 (Ki=11.5μM) and liver microsomes (Ki=20μM), and attenuated C-8-hydroxylation (Ki=15.5μM) in Supersomes CYP1A2. On the other hand, perazine weakly inhibited caffeine C-8-hydroxylation in liver microsomes (Ki=98μM). About 80% of basal CYP1A2 activity was reduced by the therapeutic concentrations of perazine (5–10μM).The obtained results show that perazine at its therapeutic concentrations is a potent inhibitor of human CYP1A2. Hence, taking account of CYP1A2 contribution to the metabolism of endogenous substances (steroids), drugs (xanthine derivatives, phenacetin, propranolol, imipramine, phenothiazine neuroleptics, clozapine) and carcinogenic compounds, the inhibition of CYP1A2 by perazine may be of physiological, pharmacological and toxicological importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.