Abstract

AbstractThe group III metabotropic glutamate receptors (mGluRs), comprising mGluR4, mGluR6, mGluR7, and mGluR8, offer neuroprotective potential in mitigating excitotoxicity during ischemic brain injury, particularly in neonatal contexts. They are G-protein coupled receptors that inhibit adenylyl cyclase and reduce neurotransmitter release, mainly located presynaptically and acting as autoreceptors. This review aims to examine the differential expression and function of group III mGluRs across various brain regions such as the cortex, hippocampus, and cerebellum, with a special focus on the neonatal stage of development. Glutamate excitotoxicity plays a crucial role in the pathophysiology of brain ischemia in neonates. While ionotropic glutamate receptors are traditional targets for neuroprotection, their direct inhibition often leads to severe side effects due to their critical roles in normal neurotransmission and synaptic plasticity. Group III mGluRs provide a more nuanced and potentially safer approach by modulating rather than blocking glutamatergic transmission. Their downstream signaling cascade results in the regulation of intracellular calcium levels, neuronal hyperpolarization, and reduced neurotransmitter release, effectively decreasing excitotoxic signaling without completely suppressing essential glutamatergic functions. Importantly, the neuroprotective effects of group III mGluRs extend beyond direct modulation of glutamate release influencing glial cell function, neuroinflammation, and oxidative stress, all of which contribute to secondary injury cascades in brain ischemia. This comprehensive analysis of group III mGluRs multifaceted neuroprotective potential provides valuable insights for developing novel therapeutic strategies to combat excitotoxicity in neonatal ischemic brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.