Abstract

Although has high oxidation capacity and low toxic by-product formation potential, the feasibility, mechanism, and antibiotic treatment performance of peracetic acid (PAA)-based electrochemical system remains unknown. This work systematically studied the electro-activation process of PAA, and distinguished the different mechanisms of anode and cathode. In the PAA-based electrochemical system, the anode mainly produces BDD(•OH), and the cathode is mainly the R-O• (especially CH3CO3•). These differences lead to different degradation pathway and toxicity evolution of sulfamethoxazole (SMX). The anode transformation products (TPs) show negative toxicity and are difficult to be further removed, while TPs from PAA-dominated cathode posed electron-donating effect and a tapering ecological risk. The BDD(•OH) can well mineralize the TPs produced from cathode. Moreover, the active chlorine produced by the anode can effectively avoid the accumulation of NH4+- N released by antibiotic degradation. In an undivided cell, PAA-based treatment for real antibiotic wastewater achieved 73.9%, 59.4%, 76.9%, and 31.7% of COD, TOC, NH4+- N, and TN removal, respectively. More importantly, when PAA existed in this system, the active chlorine and AOCl accumulation are inhibited (inhibition ratio 83.5% and 82.7%, respectively). This study provides theoretical and technical support for the practical application of PAA-based electrochemical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.